Leslie Leinwand
Estrogen receptor-α (ERα) is a nuclear receptor family member thought to substantially contribute to the metabolic regulation of skeletal muscle. However, previous mouse models utilized to assess the necessity of ERα signaling in skeletal muscle are
Background Myogenesis is driven by specific changes in the transcriptome that occur during the different stages of muscle differentiation. In addition to controlled transcriptional transitions, several other post-transcriptional mechanisms direct- Differences in miR29 and Pro-fibrotic Gene Expression in Mouse and Human Hypertrophic CardiomyopathyBackground: Hypertrophic cardiomyopathy (HCM) is characterized by myocyte hypertrophy and fibrosis. Studies in 2 mouse models (R92W-TnT/R403Q-MyHC) at early HCM stage revealed upregulation of endothelin (ET1) signaling in both mutants, but TGFβ
There is a growing interest in materials that can dynamically change their properties in the presence of cells to study mechanobiology. Herein, we exploit the 365 nm light mediated [4+4] photodimerization of anthracene groups to develop
Numerous diseases, including those of the heart, are characterized by increased stiffness due to excessive deposition of extracellular matrix proteins. Cardiomyocytes continuously adapt their morphology and function to the mechanical changes of- The transcatheter aortic valve replacement (TAVR) procedure has emerged as a minimally invasive treatment for patients with aortic valve stenosis (AVS). However, alterations in serum factor composition and biological activity after TAVR remain
Hypertrophic cardiomyopathy (HCM) is a common genetic disorder characterized by left ventricular hypertrophy and cardiac hyper-contractility. Mutations in the β cardiac myosin heavy chain gene (β-MyHC) are a major cause of HCM, but the specific
Numerous diseases, including those of the heart, are characterized by increased stiffness due to excessive deposition of extracellular matrix proteins. Cardiomyocytes continuously adapt their morphology and function to the mechanical changes of
What can we learn from prairie voles, Burmese pythons, shortfin mollies, and naked mole rats? Researchers from across the world are studying unusual laboratory animals with astonishing traits in their quest to answer important questions in the
̽Ƶ engineers and faculty from the Consortium for Fibrosis Research & Translation (CFReT) at the CU Anschutz Medical Campus have teamed up to develop biomaterial-based “mimics” of heart tissues to measure patients’ responses to