EPN /rasei/ en New ‘Molecular Dam’ Stops Energy Leaks in Nanocrystals /rasei/2025/10/21/new-molecular-dam-stops-energy-leaks-nanocrystals <span>New ‘Molecular Dam’ Stops Energy Leaks in Nanocrystals </span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-10-21T13:17:19-06:00" title="Tuesday, October 21, 2025 - 13:17">Tue, 10/21/2025 - 13:17</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-10/2025_09_ChargeSeparationThumbnail.jpg?h=4362216e&amp;itok=vDukBiSr" width="1200" height="800" alt="Illustration showing the charge separation event"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/315" hreflang="en">EPN</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/385" hreflang="en">RoundupPhotocatalysis</a> </div> <a href="/rasei/our-community">Daniel Morton</a> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p class="lead"><em>A molecular engineering breakthrough could make key light-driven reactions over 40 times more efficient.&nbsp;</em></p><p>A collaborative team of scientists from the University of Colorado Boulder, the University of California Irvine, and Fort Lewis College, led by RASEI Fellow Gordana Dukovic, has found a way to slow energy leaks that have impeded the use of tiny nanocrystals in light-driven chemical and energy applications. <a href="https://doi.org/10.1016/j.chempr.2025.102760" rel="nofollow">As described in a new article published in the journal Chem</a>, the team has used a molecule that strongly binds to the nanocrystal’s surface, essentially acting like a ‘dam’ to hold back the energy stored in the charge-separated state formed after light absorption. This technique extends the lifetime of the charge separation to the longest recorded for these materials, providing a pathway to improved efficiencies and more opportunities to put this energy to work in chemical reactions. This collaboration is part of the U.S. Department of Energy funded <a href="https://science.osti.gov/bes/efrc" rel="nofollow">Energy Frontier Research Center</a>: <a href="https://photosynthesis.uci.edu/" rel="nofollow">Ensembles of Photosynthetic Nanoreactors (EPN).</a>&nbsp;</p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><h3><strong>Harnessing Light to Power Chemistry</strong></h3><p>Many of the products we rely on today, from plastics, to fertilizers, and pharmaceuticals, are created, or synthesized, through industrial chemical reactions that can often require immense heat and pressure, typically generated by burning fossil fuels. For decades there has been research exploring a less harsh and theoretically more efficient alternative: Photocatalysis. The goal is to use a compound, a “photocatalyst”, that can harness the energy in light and use it to power chemical reactions at room temperature. Semiconductor nanocrystals, particles that are over a thousand times smaller than the width of a human hair, are a leading candidate for this job. When exposed to light these nanocrystals generate a short-lived spark of energy, in the form of a separated negative charge (an electron) and a positive charge (called a “hole”, due to the absence of an electron). A key challenge in this area is that this spark disappears quickly, because the electron and the hole recombine, and the energy is lost before it can be put to good use.&nbsp;</p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-row-subrow row"> <div class="ucb-article-text col-lg d-flex align-items-center" itemprop="articleBody"> <div><h3><strong>Building a Molecular Dam</strong></h3><p><span>To solve this problem the team focused on building what we might call a ‘molecular dam’, something that helps prevent, or at least slow down, the electron and the hole from recombining. This research started with cadmium sulfide (CdS) nanocrystals and designed a molecule (in this case a phenothiazine derivative) with two key features; first the incorporation of a chemical group that acts as a ‘sticky anchor’ (in this case a carboxylate group), which binds strongly to the nanocrystal surface, and second, a molecular structure that quickly accepts the positive charge (the hole), from the nanocrystal to realize the light-driven charge separation event.&nbsp;</span></p><p><span>By anchoring this molecule to the surface of the nanocrystal the team created a highly efficient and stable pathway. As soon as exposure to light creates the electron-hole pair in the nanocrystal, the anchored molecule shuttles the hole away, physically separating it from the electron. This physical separation of the electron and the hole prevents the two from quickly snapping back together and wasting the energy. This results in a charge-separated state that lasts for microseconds, which is an eternity in the world of photochemistry, creating a much larger window of time for future researchers to work with in terms of harnessing this captured light-driven energy for useful chemical reactions. The team was able to prove the significance of the ‘sticky anchor’ carboxylate, by comparing their derivative to a phenothiazine that lacked the anchor, which was shown to be far less effective at holding the energy, demonstrating that this anchoring to the surface was key to this system’s performance.</span></p></div> </div> <div class="ucb-article-content-media ucb-article-content-media-right col-lg"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2025-10/structure%20overview.png?itok=TGhdDxmb" width="1500" height="1401" alt="chemical representation of the 'molecular dam'"> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p>This collaborative work was done as part of the U.S. Department of Energy funded <a href="https://science.osti.gov/bes/efrc" rel="nofollow">Energy Frontier Research Center</a> (EFRC) <a href="https://photosynthesis.uci.edu/" rel="nofollow">Ensembles of Photosynthetic Nanoreactors (EPN).</a> EPN consists of 17 senior investigates located across 9 universities and 3 U.S. national laboratories. The goal of EPN is to provide a forum for collaboration, bringing together expertise to advance the frontiers of discovery and fundamental knowledge in photochemical energy conversion. The aim is to not only foster new discoveries and applications, but in doing so, train the researchers who will build knowledge and advances that will benefit the United States innovation and economy.</p><p>This project took advantage of the different areas of expertise of each team to generate ideas and quickly execute them. Kenny Miller’s group of dedicated undergraduate researchers at Fort Lewis College synthesized the carboxylated phenothiazine derivative (and a slew of others). Miller then sent the derivative to Jenny Yang’s group of inorganic electrochemists at UC Irvine for advanced electrochemical characterization. Gordana Dukovic’s group here at ̽Ƶ synthesized the nanocrystals, tested their compatibility with the derivative, characterized the binding, and undertook the advanced laser spectroscopy study to see how the electrons and holes behaved.</p><blockquote><p>“The first time I saw the results-saw how effective our ‘molecular dam’ was at slowing charge recombination-I knew we had struck gold” explained Dr. Sophia Click, a lead author on the study. “To slow charge recombination from nanoseconds to microseconds, and with a molecule that can be paired with so many existing photocatalyst systems, makes this work vital to share with as many researchers as possible.”</p></blockquote><p>Development of this ‘molecular dam’ could have implications for the future design of catalysts for light-driven chemistry. By increasing the efficiency of the initial energy-capture step, this system improves the efficiency of the entire process. This could improve not just one specific reaction, but rather, benefit a broad range of light-driven chemical reactions. A key technology this could enhance is the development of light-driven creation of chemical commodities or high-value chemicals. This research provides a more robust and versatile chemical toolkit for exploring these possibilities.</p><p>This discovery in controlling charge-separation, and energy, at the nanoscale is an important design parameter into developing light-driven chemistry, and hopefully light-driven chemical manufacturing. Imagine a future where materials, such as plastics, and even pharmaceuticals, are not made in energy inefficient high-temperature reactors powered by fossil fuels but instead are synthesized directly and efficiently using the power of light. While this vision is still on the horizon, the work done in this collaboration provides an important piece of the scientific puzzle, constituting a huge leap toward one day achieving these goals.</p><p><span>The study, “Exceptionally Long-Lived Charge Separated States in CdS Nanocrystals with a Covalently Bound Phenothiazine Derivative” was published in the journal Chem. This work was supported by the U.S. Department of Energy, Office of Science, as part of the Energy Frontier Research Center: Ensembles of Photosynthetic Nanoreactors (EPN; DE-SC0023431), with additional experiments on nanorods supported by Air Force Office of Scientific Research under AFOSR (FA9550-22-1-0347).</span></p></div> </div> </div> </div> </div> <div>October 2025</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2025-10/2025_09_ChargeSeparationHero.jpg?itok=QhN5h3UT" width="1500" height="328" alt="Illustration of the charge separation event"> </div> </div> <div>On</div> <div>White</div> Tue, 21 Oct 2025 19:17:19 +0000 Daniel Morton 1407 at /rasei Exceptionally long-lived charge-separated states in CdS nanocrystals with a covalently bound phenothiazine derivative /rasei/2025/10/13/exceptionally-long-lived-charge-separated-states-cds-nanocrystals-covalently-bound <span>Exceptionally long-lived charge-separated states in CdS nanocrystals with a covalently bound phenothiazine derivative</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-10-13T17:35:33-06:00" title="Monday, October 13, 2025 - 17:35">Mon, 10/13/2025 - 17:35</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-10/2025_10_13_Chem.png?h=c4e54fe5&amp;itok=-AYZ2mlX" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/280" hreflang="en">Computational Modeling</a> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/315" hreflang="en">EPN</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>CHEM, 2025, 102760</div> <script> window.location.href = `https://doi.org/10.1016/j.chempr.2025.102760`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 13 Oct 2025 23:35:33 +0000 Daniel Morton 1431 at /rasei Models and Measurements Quantify Photon Recycling, Charge-Carrier Diffusion and Photon Scattering Contributions to Photoluminescence in InP Nanowire Arrays /rasei/2025/04/19/models-and-measurements-quantify-photon-recycling-charge-carrier-diffusion-and-photon <span>Models and Measurements Quantify Photon Recycling, Charge-Carrier Diffusion and Photon Scattering Contributions to Photoluminescence in InP Nanowire Arrays</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-04-19T12:23:25-06:00" title="Saturday, April 19, 2025 - 12:23">Sat, 04/19/2025 - 12:23</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-08/2025_04_19_JPhyChemC_Thumbnail.png?h=d3502f1d&amp;itok=5WlSgBLT" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/315" hreflang="en">EPN</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>THE JOURNAL OF PHYSICAL CHEMISTRY C, 2025, 129, 17, 8270-8283</div> <script> window.location.href = `https://doi.org/10.1021/acs.jpcc.5c01618`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Sat, 19 Apr 2025 18:23:25 +0000 Daniel Morton 1358 at /rasei Single-Molecule Fluorescence Microscopy Reveals Energy Transfer Active versus Inactive Nanocrystal/Dye Conjugate Pairs /rasei/2025/04/07/single-molecule-fluorescence-microscopy-reveals-energy-transfer-active-versus-inactive <span>Single-Molecule Fluorescence Microscopy Reveals Energy Transfer Active versus Inactive Nanocrystal/Dye Conjugate Pairs</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-04-07T15:56:48-06:00" title="Monday, April 7, 2025 - 15:56">Mon, 04/07/2025 - 15:56</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-04/2025_04_07_ChemBiomedIm.png?h=d3502f1d&amp;itok=F9aY7Ooj" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/315" hreflang="en">EPN</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>CHEMICAL AND BIOMEDICAL IMAGING, 2025, ASAP</div> <script> window.location.href = `https://doi.org/10.1021/cbmi.5c00009`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 07 Apr 2025 21:56:48 +0000 Daniel Morton 1281 at /rasei Revealing the Influence of Binding Motifs on Electron Transfer and Recombination Kinetics for CdSe Quantum Dots Functionalized with a Modified Viologen /rasei/2025/03/06/revealing-influence-binding-motifs-electron-transfer-and-recombination-kinetics-cdse <span>Revealing the Influence of Binding Motifs on Electron Transfer and Recombination Kinetics for CdSe Quantum Dots Functionalized with a Modified Viologen</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-03-06T13:27:26-07:00" title="Thursday, March 6, 2025 - 13:27">Thu, 03/06/2025 - 13:27</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-04/2025_03_06_JPhysChemC.png?h=d3502f1d&amp;itok=KnU-FsDE" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/315" hreflang="en">EPN</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>THE JOURNAL OF PHYSICAL CHEMISTRY C, 2025, 129, 11, 5556-5570</div> <script> window.location.href = `https://doi.org/10.1021/acs.jpcc.5c00740`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 06 Mar 2025 20:27:26 +0000 Daniel Morton 1265 at /rasei RASEI Secures Funding to Pursue Collaborative Team Science Programs to Address Climate Change Challenges /rasei/2022/08/27/rasei-secures-funding-pursue-collaborative-team-science-programs-address-climate-change <span>RASEI Secures Funding to Pursue Collaborative Team Science Programs to Address Climate Change Challenges</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2022-08-27T00:00:00-06:00" title="Saturday, August 27, 2022 - 00:00">Sat, 08/27/2022 - 00:00</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/article-thumbnail/2022_08_EFRC_Funding_RASEI%20Thumbnail.png?h=3f8abde5&amp;itok=VPvAlpOK" width="1200" height="800" alt="Summary banner that shows all of the Fellows funded for research and a map that shows the locations of all of the collaborators"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/51" hreflang="en">Barlow</a> <a href="/rasei/taxonomy/term/120" hreflang="en">Beard</a> <a href="/rasei/taxonomy/term/144" hreflang="en">Berry</a> <a href="/rasei/taxonomy/term/314" hreflang="en">Biolec</a> <a href="/rasei/taxonomy/term/313" hreflang="en">CCCC</a> <a href="/rasei/taxonomy/term/316" hreflang="en">CEDARS</a> <a href="/rasei/taxonomy/term/320" hreflang="en">CHOISE</a> <a href="/rasei/taxonomy/term/134" hreflang="en">Cuk</a> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/315" hreflang="en">EPN</a> <a href="/rasei/taxonomy/term/155" hreflang="en">Jonas</a> <a href="/rasei/taxonomy/term/148" hreflang="en">Luther</a> <a href="/rasei/taxonomy/term/50" hreflang="en">Marder</a> <a href="/rasei/taxonomy/term/113" hreflang="en">Miller</a> <a href="/rasei/taxonomy/term/81" hreflang="en">Reid</a> <a href="/rasei/taxonomy/term/140" hreflang="en">Rumbles</a> <a href="/rasei/taxonomy/term/306" hreflang="en">SPECS</a> <a href="/rasei/taxonomy/term/116" hreflang="en">Smith</a> <a href="/rasei/taxonomy/term/111" hreflang="en">Toney</a> </div> <a href="/rasei/our-community">Daniel Morton</a> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/block/2022_08_EFRC_Funding_RASEI%20Slider.png?itok=NoHsagM0" width="1500" height="563" alt="Summary banner that shows all of the Fellows funded for research and a map that shows the locations of all of the collaborators"> </div> </div> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p class="hero"><span>Thirteen members of RASEI secured funding from the Department of Energy to participate in inter-disciplinary team science to address a range of challenges associated with combating climate change.</span></p><hr><p>&nbsp;</p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><div class="feature-layout-callout feature-layout-callout-large"><div class="ucb-callout-content"><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-regular" href="https://www.energy.gov/articles/doe-announces-540-million-technologies-transform-energy-production-and-cut-emissions" rel="nofollow"><span class="ucb-link-button-contents">EFRC Funding Announcement</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-regular" href="https://science.osti.gov/bes/efrc" rel="nofollow"><span class="ucb-link-button-contents">DOE EFRC Homepage</span></a></p><p><a class="ucb-link-button ucb-link-button-gold ucb-link-button-full ucb-link-button-regular" href="/researchinnovation/2022/09/28/rasei-represented-prominently-department-energy-centers-tackling-climate-change" rel="nofollow"><span class="ucb-link-button-contents">̽Ƶ Announcement</span></a></p><hr><p><a class="ucb-link-button ucb-link-button-white ucb-link-button-full ucb-link-button-regular" href="https://www.choise-efrc.org/home" rel="nofollow"><span class="ucb-link-button-contents">CHOISE</span></a></p><p><a class="ucb-link-button ucb-link-button-white ucb-link-button-full ucb-link-button-regular" href="https://biolec.princeton.edu/" rel="nofollow"><span class="ucb-link-button-contents">BioLEC</span></a></p><p><a class="ucb-link-button ucb-link-button-white ucb-link-button-full ucb-link-button-regular" href="https://specs.arizona.edu/" rel="nofollow"><span class="ucb-link-button-contents">SPECS</span></a></p><p><a class="ucb-link-button ucb-link-button-white ucb-link-button-full ucb-link-button-regular" href="https://photosynthesis.uci.edu/" rel="nofollow"><span class="ucb-link-button-contents">EPN</span></a></p><p><a class="ucb-link-button ucb-link-button-white ucb-link-button-full ucb-link-button-regular" href="https://carbonsolution.uci.edu/" rel="nofollow"><span class="ucb-link-button-contents">4C</span></a></p><p><a class="ucb-link-button ucb-link-button-white ucb-link-button-full ucb-link-button-regular" href="https://cedars-ncat.org/" rel="nofollow"><span class="ucb-link-button-contents">CEDARS</span></a></p></div></div><p>In recent decades the scientific endeavor has expanded our knowledge and deepened our understanding of many of the imposing problems that face&nbsp;society. With this improved insight comes an appreciation that many of these issues are multi-faceted, far-reaching, and complex. The climate crisis is the toughest challenge for this generation and is an exceptionally intricate, systematic and multi-layered puzzle.&nbsp;In order to address this challenge in a holistic fashion we need teams of innovative scientists, from across a broad range of scientific and engineering fields, to work together in an inter-disciplinary fashion.</p><p>The Renewable and Sustainable Energy Institute (RASEI), a joint institute between ̽Ƶ and the National Renewable Energy Laboratory (NREL), has prioritized becoming a hub for multi-disciplinary teams focused on climate solutions to work together.&nbsp;Development of this ecosystem anable teams to expand their collaboration across the entire RASEI community, extending to engagement with other academic, national labs and industrial partners&nbsp;along the Front Range. Through fostering a team environment, developing a culture of sharing and integration, RASEI aims to accelerate fundamental discoveries and their translation to applications and solutions that can be deployed to all communities in need.</p><p>In August of 2022 the Department of Energy (DOE) released $540 million of funding for research into clean energy technologies and low-carbon manufacturing, $400 million of which is to establish and continue multi-disciplinary team science at Energy Frontier Research Centers (EFRCs). Across the nation 43 EFRCs were funded, with 13 RASEI members involved in six of these Centers.</p><p><span>The EFRC program was established by the DOE Office of Basic Energy Sciences (BES) in 2009 to address the fact that global demand for energy is rapidly expanding, and the way in which energy is collected, stored and used needs to change. The goal of an EFRC is to bring together creative, multi-disciplinary scientific teams to tackle the toughest scientific challenges preventing advances in energy technologies. At the core of an EFRC's mission is to train the next generation of the scientific workforce, both in advanced technical techniques, and also in team science and developing the skills needed&nbsp;to work&nbsp;together to tackle large-scale problems. These Centers are initially funded for four years at about $4&nbsp;million per year. If the Centers are successful, they can apply for renewed funding at the end of the first four years. Centers can only be renewed once.&nbsp;</span></p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p>For the 2022 funding announcement, two of the RASEI-infused EFRCs, one of which is based at NREL, were renewals of existing Centers, and the other four awards were to establish new research teams. You can find out more details about the different Centers in the summary boxes below.</p><p>The RASEI community is energized to be involved in these exciting collaborative opportunities, and the chance to work together across these teams as part of the RASEI community. Colorado’s U.S. Representative Ed Perlmutter captured this enthusiasm in his quote as part of the funding announcement:</p><blockquote><p>“NREL and ̽Ƶ, among others, continue to lead our nation in their cutting-edge research and development of a variety of clean energy technologies and low-carbon manufacturing. Their work is essential in the fight to combat climate change and achieve important climate and clean energy goals in the future”</p></blockquote><p>If you would like to keep up with the progress these teams make, check out the&nbsp;<a href="http://rasei.colorado.edu/" rel="nofollow">RASEI website</a>&nbsp;or signup to our monthly newsletter.&nbsp;</p></div> </div> </div> </div> </div> <div>Thirteen members of RASEI secured funding from the Department of Energy to participate in inter-disciplinary team science to address a range of challenges associated with combating climate change.</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Zebra Striped</div> <div>0</div> <div>On</div> <div>White</div> Sat, 27 Aug 2022 06:00:00 +0000 Anonymous 769 at /rasei